Structure of a semisimple dihedral group algebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan Automorphisms on a Semisimple Banach Algebra

In the group of (continuous) Jordan automorphisms, with the uniform topology, on a semisimple Banach algebra, we show that the connected component of the identity consists of automorphisms. P. Civin and B. Yood have shown that a Jordan homomorphism (that is, a homomorphism that preserves the product xoy = | (xy+yx)) from a Banach algebra onto a semisimple Banach algebra is continuous provided t...

متن کامل

Symmetry classes of polynomials associated with the dihedral group

‎In this paper‎, ‎we obtain the dimensions of symmetry classes of polynomials associated with‎ ‎the irreducible characters of the dihedral group as a subgroup of‎ ‎the full symmetric group‎. ‎Then we discuss the existence of o-basis‎ ‎of these classes‎.

متن کامل

Structure of Certain Banach Algebra Products

Let  and  be Banach algebras, ,  and . We define an -product on  which is a strongly splitting extension of  by . We show that these products form a large class of Banach algebras which contains all module extensions and triangular Banach algebras. Then we consider spectrum, Arens regularity, amenability and weak amenability of these products.

متن کامل

Principal nilpotent pairs in a semisimple Lie algebra

This is the first of a series of papers devoted to certain pairs of commuting nilpotent elements in a semisimple Lie algebra that enjoy quite remarkable properties and which are expected to play a major role in Representation theory. The properties of these pairs and their role is similar to those of the principal nilpotents. To any principal nilpotent pair we associate a two-parameter analogue...

متن کامل

A differential equation for diagonalizing complex semisimple Lie algebra elements

In this paper, we consider a generalization of Ebenbauer’s differential equation for non-symmetric matrix diagonalization to a flow on arbitrary complex semisimple Lie algebras. The flow is designed in such a way that the desired diagonalizations are precisely the equilibrium points in a given Cartan subalgebra. We characterize the set of all equilibria and establish a Morse-Bott type property ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2019

ISSN: 1757-899X

DOI: 10.1088/1757-899x/618/1/012090